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Malware on Apple’s OS X systems is proving to be an 
increasing security threat, and one that is currently countered 
solely with traditional anti-virus (AV) technologies. 
Traditional AV technologies impose a signifi cant performance 
overhead on the computer system and there is an inherent 
delay in their effectiveness, due to their signature-based 
detection techniques. This paper presents a novel generic 
behavioural detection and prevention mechanism for malware 
on OS X that is based on system calls. A large number of 
system call traces are analysed, from which certain malicious 
system call patterns are defi ned. These patterns are based on 
execution system calls, executing Unix shell processes. Three 
types of user profi les are defi ned to evaluate the detection 
patterns, resulting in a 100% detection rate and a 0% to 20% 
false positive rate, depending on the type of user profi le.

1. INTRODUCTION
Over the last three years, an increase in malware targeting 
OS X systems has been observed. Five times more OS X 
malware appeared in 2015 than during the preceding fi ve 
years combined [1]. Many types of malware that previously 
appeared only on Microsoft Windows systems are now also 
emerging on OS X systems. Serious threats such as rootkits 
designed to exfi ltrate valuable information from systems, 
or malware that encrypts personal documents such that 
they can only be decrypted in exchange for bitcoins are no 
longer absent from Macs. Traditional anti-virus technologies 
rely heavily on binary signature checking, a detection 
technique that often lags behind [2, 3], yet traditional 
detection techniques are still widely used, especially on 
OS X. Nowadays, many binary obfuscation and signature 
modifi cation techniques are used by malware to evade AV 
detection. A need for more advanced malware detection 
methods has arisen.

This paper presents a novel malware detection method that 
has been shown to be able to prevent infection by every 
malware sample that could be found on OS X systems at 
the time, without prior knowledge of the malware samples. 
System calls are used to defi ne and detect malicious 
behaviour of malware processes on OS X. In addition, 
the proposed techniques are performance-effi cient and 
not based on any computationally intensive machine 

learning algorithms. System calls are requests for specifi c 
functionality from applications to an operating system. 
This paper shows that monitoring the system call usage of 
applications and processes on a system can reveal application 
behaviours, which can be used to identify malicious 
processes. By monitoring a large number of benign and 
malicious processes, a clear recurring pattern of system calls 
can be extracted from the malicious processes that is absent 
from the system call traces of benign processes on OS X. 
Heat map visualizations and sequential analysis of the system 
call traces are used to obtain the insights required to construct 
the malicious patterns. Several of these malicious patterns are 
provided and explained in this paper.

In Section 3, the paper describes the structure of the acquired 
system call traces and the utilities constructed. The process 
of collecting the system calls traces from malware samples is 
described in Section 4. Subsequently, the analysis and results 
are explained in Section 5. Finally, the results are evaluated 
and discussed in Sections 6 and 7, respectively.

2. RELATED WORK
The majority of research conducted into detecting malware 
focuses on static analysis. Static analysis of malware is 
a technique in which the machine code contained in the 
malware binary fi le is interpreted to understand actions that 
are supposed to be performed by the binary fi le. Typically, 
the disassembly of the malware binary is used to obtain an 
understanding of its intended functionality.

On the other end of the malware analysis spectrum, dynamic 
analysis of malware aims to interpret functionality and 
behaviour by running the malware sample on a particular 
system and analysing the systems resources used. 
Behavioural analysis is concerned primarily with deriving 
identifying behavioural features from the malware. The 
advantage of this technique is that binary obfuscation 
techniques that are applied by malware creators to hinder 
analysis by malware analysts do not hinder dynamic analysis, 
because functionality is derived from actions performed by 
malware on the system [3].

In 1996, Forrest et al. [4] introduced an intrusion detection 
method based on monitoring the system calls used by active, 
privileged processes. This work shows that a program’s 
normal behaviour can be characterised by local patterns 
in its traces, and deviations from these patterns could be 
used to identify security violations of an executing process. 
Others tried to improve this work by using machine 
learning algorithms, however, these algorithms came with a 
computational cost and were not able to perform real-time 
detection of malware [5].
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Niels Provos [6] introduced a tool named Systrace, which 
aims to improve security of the host by enforcing system 
call policies based on interposing system calls. Systrace 
monitors the direct system call usage to detect and prevent 
processes from violating policies. Provos points out that, 
although powerful, policy enforcement at the system call 
level has inherent limitations regarding the interpretation of 
an application’s internal state. Kurchuk et al. [7] improve 
upon Provos’ Systrace by proposing two extensions: nested 
policies and dynamic policy generation.

Kang et al. [8], Medhi et al. [9], and Xiao et al. [10] propose 
a malware detection method based on system calls using 
established machine learning algorithms. System calls are 
represented by a ‘bag’ data structure where elements are 
integer frequencies of system call occurrences. Medhi uses 
multidimensional n-grams to perform ‘in-execution’ detection 
on Linux systems. The proposed approaches in terms of 
detection rate and false positive rate are promising: an 85% to 
95% detection rate is achieved.

Sun et al. [11] use dynamic monitoring of Windows API calls 
to detect worms and exploits. However, their approach is 
limited to the detection of worms and exploits that use hard-
coded addresses of API calls, which is not the case when 
Address Space Layout Randomization (ASLR) is activated 
on the operating system. Nair et al. [12] determine the 
frequency of critical API calls made by programs and use this 
information to construct a signature for a program. Nair et al. 
introduce their own classifi cation algorithm and show an 80% 
detection rate for Windows malware.

Dehnert [13] argues that an IDS running on the host 
operating system itself is vulnerable to a direct attack 
and proposes an intrusion detection method based on a 
hypervisor. Dehnert uses system call usage and arguments 
to detect malware. The detection methods implemented are 
manually defi ned patterns and system call patterns using 
‘sequence time-delay embedding’ (stide), a time sequence 
machine learning algorithm. However, due to the absence 
of any refi nement, the detection technique performs very 
poorly and operates with a performance overhead of 
almost 300%.

Canzanese et al. [14] propose another machine learning 
approach for Microsoft Windows systems using logistic 
regression trained by the Stochastic gradient descent of 
system call 3-grams. Their detection method achieves a true 
positive rate of 92%.

The majority of research focuses on detection algorithms 
that are based on established machine learning algorithms. 
In many cases, the detection algorithms are computationally 
intensive and not real-time. In addition, the detection rate 
has room for improvement. This research uses very similar 
fundamentals – system call traces – but does not use machine 
learning as a detection technique.

3. MONITORING SYSTEM CALL USAGE

One way to separate the functionality provided by an 
operating system is a division between user space and kernel 
space. Applications that run in user space are less privileged 
in terms of permissions than kernel space processes, and are 
controlled by the kernel. This separation mainly facilitates 
the security of an operating system. A common way for 
processes in user space to interact with the kernel is by means 
of system calls. System calls are used to request specifi c 
functionality from the operating system. Examples of typical 
system calls are SYS_open to obtain the fi le handle of a fi le 
on the fi le system, and SYS_getsocket to obtain the handle 
of a socket to connect to the Internet. The implementation of 
calls resides in the XNU kernel of an OS X system. The latest 
XNU kernel features 489 system calls, which are defi ned 
in kernel-owned memory named sysent. To monitor the 
system call usage of processes, system call implementations 
have to be modifi ed to log themselves upon invocation. To 
accomplish system call logging, system call implementations 
are hooked into, which enables the logging functionality. 
The implementations of system calls in the sysent-table are 
then replaced with different implementations. This technique 
is called ‘hooking’ [15]. Figure 1 shows the rewiring of a 
system call implementation after the call is ‘hooked’. The 
sysent entry points to the hooked implementation system call 
instead of the original system call implementation. System 
call i represents a normal system call wiring, while system 
call j represents a hooked system call, in which the j-hook 
block logs system call j and eventually returns back to the 
original j system call implementation.

Figure 1: High level sysent-table representation in which all 
of the system calls are defi ned. System call i represents the 

normal system call wiring to its implementation. System call j 
represents a hooked system call.

A kernel module implementing the hooking of system calls 
was developed (the source code is available on GitHub [16]). 
The hook logs the system call invoked in the exact order of 
occurrence to a log fi le and subsequently calls the original 
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system call implementation to continue normal functionality, 
as shown in Figure 1. Table 1 shows the metadata of a system 
call that is logged to the log fi le.

Name Description

Uptime Uptime of the system, in 
microseconds precision, to keep 
track of system call order.

Process ID Together with the parent process 
ID, this provides the ability to 
perform traces in the dataset.

Parent process ID Together with the process ID, 
this provides the ability to 
perform traces in the dataset.

Privileges Does the calling process have 
super-user privileges?

Process name Name of the process.

Process execution path File system path of the process.

System call name Name of the system call.

SYS_write location Location to which the ‘write’ 
system call writes.

Table 1: Metadata of a system call that is captured.

Subsequently, while the kernel module is loaded, system calls 
called by processes log their invocation to a log fi le, resulting 
in a large number of system call traces in the exact order in 
which the calls were invoked. The log fi le represents the ‘raw 
dataset’. Listing 1 shows several records of the raw dataset. 
The records are sequential and ordered chronologically, 
where each record represents a single operation (system 
call invocation). The records are semicolon separated, 
representing the attributes presented in the fi rst line (header). 
In Listing 1, process pboard executes the /bin/sh binary, using 
the SYS_posix_spawn system call.

Not all system calls are hooked. Some are called more than 
500 times per second in an idle system state. Examples of 
such calls are SYS_read for reading fi les and SYS_setitimer, 
which is used by processes to set an interval timer. System 
call usage was observed on an idle system. The system 
calls generating more than 500 log records per second were 

   time ;  process name; pid; ppid; syscall  ; is_root;

   0:5:6,448659; pboard ; 474; 1  ; SYS_pipe   ; 0;

   0:5:6,448689; pboard ; 474; 1  ; SYS_posix_spawn ; 0;

   0:5:6,450010; /bin/sh ; 474; 1  ; NEW_PROCESS   ; 0;

   0:5:6,450205; sh ; 476; 474  ; SYS_shared_region_chk ; 0;

Listing 1: Process pboard executes /bin/sh process and sh starts calling system calls (OSX.OceanLotus.A).

excluded from the list of hooked system calls to prevent 
pollution of the dataset. A list of the hooked system calls is 
available at the GitHub repository [16].

4. COLLECTING SYSTEM CALL TRACES
System call traces can only be collected at the runtime of 
processes. Malware has to be executed while the kernel 
module is loaded into the kernel of the operating system. A 
virtual machine featuring a fully patched OS X 10.11.3 was 
used to run malware samples. After the kernel module was 
loaded, the malware sample was executed and monitored for 
fi ve minutes, which was the initial estimate of the amount 
of time required for infection of a system by the malware 
samples. In the analysis phase, it appeared the infection phase 
was much shorter. Subsequently, the log fi le was captured 
and the virtual machine reverted to its original state for the 
next malware sample to be monitored.

According to Symantec, 57 unique OS X malware samples 
have been found since 2010 [17]. Obtaining functional 
malware samples is not trivial, and in order to create a 
system call trace from a malware sample, the sample must be 
complete and functional. Often, only certain malicious parts 
of OS X applications that are not executable are uploaded 
to malware sample collecting services such as VirusTotal. 
For this research, 23 functional OS X malware samples were 
obtained from different sources [18–20]. Table 2 provides 
an overview of the functional malware samples obtained and 
analysed.

5. ANALYSIS
The analysis of the collected raw system call traces aims 
to provide insights into the discrepancies between system 
call traces in benign and malicious processes. The goal is to 
extract recurring patterns that are present in malicious system 
call traces, but absent from benign system call traces. Such 
patterns may then be used to identify a malicious process. 
The analysis is based on two simple techniques: heat maps 
and manual sequential analysis. A heat map, representing the 
number of calls per system call per process, was used to gain 
insight into the usage of outlying system calls by a process. 
Figure 2 shows the heat map of OSX.Wirelurker’s system call 
trace. The system calls called, and the processes, are listed on 
the x-axis and y-axis, respectively. The data points (number 
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of system calls) are normalized in the heat map, according to 
their occurrence in the system call traces of other processes. 
The normalization ensures that processes calling specifi c 
system calls that are called signifi cantly less frequently 
by other processes show darker in the heat map and imply 
outliers. In the manual sequential analysis, consisting of 
linear traversal of the system call traces, these outliers were 
analysed to derive specifi c recurring patterns.

5.1 Execution calls

The heat map visualization of a dataset containing the system 
call traces of benign processes shows SYS_execve and 
SYS_posix_spawn system calls executed only by two 
processes specifi c to the OS X operating system: launchd 
and xpcproxy. The black dotted square in Figure 2 shows 
their usage of SYS_posix_spawn. In OS X’s sandboxing 

No. Name Type Detection 
date

1 OSX.Flashback Trojan 09/30/2011

2 OSX.Crisis.I Rootkit 07/25/2012

3 OSX.FakeCodec Adware 02/03/2013

4 OSX.LaoShu.A Backdoor 01/21/2014

5 OSX.CoinThief.A Trojan 02/26/2014

6 OSX.Xslcmd Trojan 09/05/2014

7 OSX.Wirelurker Trojan 11/06/2014

8 OSX.Janicab Trojan 11/26/2014

9 OSX.iWorm Trojan 01/05/2015

10 OSX.Kitmos.A Backdoor 03/04/2015

11 OSX.Genieo!gen1 Adware 05/18/2015

12 OSX.Malcol Adware 05/21/2015

13 OSX.Downloader Adware 07/29/2015

14 OSX.Jahlav.A Trojan 07/29/2015

15 OSX.InstallCore Adware 11/16/2015 before

16 OSX.EliteKeylogger Keylogger 02/15/2016 after

17 OSX.OceanLotus Trojan 02/19/2016

18 OSX.Crisis.II Rootkit 02/26/2016

19 OSX.KeRanger.A Trojan 03/06/2016

20 OSX.Pirrit Adware 04/06/2016

21 OSX.Bundlore Adware 04/11/2016

22 OSX.Eleanor Backdoor 07/06/2016

23 OSX.Keydnap Backdoor 07/13/2016

Table 2: A list of OS X malware samples analysed in this 
research.

technology, launchd and xpcproxy [21] (XPC Services) 
are responsible for process executions and interprocess 
communication [22]. Figure 3 illustrates the XPC Services 
process execution request scheme on a high level. On a clean 
system, launchd and xpcproxy are the only processes that use 
SYS_execve and SYS_posix_spawn.

However, the heat map visualization of malware shows 
the presence of SYS_execve and SYS_posix_spawn 
performed by processes other than launchd and xpcproxy 
(also observable in Figure 2: SYS_posix_spawn calls 
by com.apple.MailServer and update are malicious calls 
performed by the OSX.Wirelurker malware). Malicious 
processes appeared to be responsible for these supplementary 
SYS_execve and SYS_posix_spawn calls. In addition, the 
execution calls appeared to execute shell processes (i.e. 
/bin/sh and /bin/bash) that, again, are responsible for many 
of the additional execution calls. After more in-depth 
manual sequential analysis of the system call traces, in 
which traces of recurring patterns were searched for, a clear 
pattern appeared to be present in all malware samples listed 
in Table 2. At some point in their infection process, all 
malicious processes use either of these calls (SYS_execve 
or SYS_posix_spawn) to execute a shell process, without 
requesting XPC Services (illustrated in Figure 4). The 
possible reason is discussed in Section 7. Listings 1, 2 and 3 
show a sample of the records in the system call trace in which 
the malicious processes use the execution calls to spawn a 
shell process.

5.2 Persistency

Another behaviour derived from the heat map and the 
sequential analysis that appeared to be inherent to malware 
was gaining persistency using LaunchDaemons (auto-run 
items on system start-up). In OS X, processes are required 

0:1:27,174721; 0; 358; 357; SYS_posix_spawn; 0;

0:1:27,176143; /bin/sh; 358; 0; NEW_PROCESS; 1;

Listing 2: Process 0 executes /bin/sh process using 
SYS_posix_spawn system call (OSX.iWorm).

time; process name; pid; ppid; syscall; is_root;

0:13:58,523214; Transmission; 413; 1; SYS_posix_spawn; 0;

0:13:58,524348; /bin/sh; 413; 1; NEW_PROCESS; 0;

...

0:13:58,530059; sh; 414; 413; SYS_execve; 0;

0:13:58,530631; /Users/m/Library/kernel_service; 414; 
413;

NEW_PROCESS; 0;

Listing 3: Process transmission executes the /bin/sh process 
using the SYS_posix_spawn system call, and process sh 
executes the kernel_service process using a SYS_execve 

system call (OSX.KeyRanger.A).
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to store a confi guration fi le in a specifi c LaunchDaemon 
directory and thereafter notify the OS (via launchctl) of the 
confi g’s existence in order to (persistently) be started by the 
operating system upon start-up. Notifying launchctl is clearly 
visible through the execution of launchctl by the malicious 
process. Every process analysed that uses LaunchDaemons 
for persistency on the system executes launchctl, as shown in 
Listings 4, 5 and 6.

0:1:48,287125; sh; 367; 363; SYS_execve; 0;

0:1:48,288733; /bin/launchctl; 367; 0; NEW_PROCESS; 1;

Listing 4: Shell process 0 executes process launchctl 
(OSX.iWorm).

0:2:11,670527; sh; 390; 387; SYS_execve; 0;

0:2:11,671598; /bin/launchctl; 390; 0; NEW_PROCESS; 1;

Listing 5: Shell process executes process launchctl 
(OSX.Wirelurker.A).

0:15:13,439772; WaAvsmZW.EMb; 1049; 1046; SYS_posix_spawn; 0;

0:15:13,439945; /bin/launchctl; 1049; 0; NEW_PROCESS; 1;

Listing 6: Process WaAvsmZW.EMb executes process 
launchctl (OSX.Crisis.A).

Some examples of OS X malware use cronjobs, a Unix utility 
used to execute a script at certain defi ned moments of time, 
to gain persistency on a system. This is visible (Listing 7) 
based on the execution of crontab, a process responsible for 
managing cronjobs.

0:1:33,92905; sh; 388; 386; SYS_execve; 0;

0:1:33,94207; /usr/bin/crontab; 387; 0; NEW_PROCESS; 0;

Listing 7: Shell process launching crontab (OSX.Jahlav).

Figure 3: Benign (sandboxed) process X requests XPC 
Services to interact with process Y. XPC Services decides 

whether to allow or deny this request.

Figure 4: Malicious process X executes process Y without 
XPC interaction. Typically, process Y is a shell process.

Figure 5: Number of execution calls, execution of shell 
processes and executions of launchctl by malicious processes. 
Note: y-axis has a logarithmic scale. Note: OSX.Crisis lacks 

the execution of a shell process due to the absence of a 
complete and functional sample of the rootkit.

Based on the heat map visualization of the entire system call 
trace, processes that connect to the Internet can be observed. 
Internet-connecting processes invoke many SYS_getsockopt 
and SYS_setsockopt operations, which are responsible for 
receiving and sending data over a socket, respectively.

Figure 5 shows the number of execution system calls, 
execution to shell processes, and executions of launchctl per 
malware sample. The large number of execution system calls 
to shell processes in all malware samples can clearly be seen.
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6. EVALUATION
The most prominent malicious pattern derived from the 
analysis phase to detect presence of malware on a system 
is the extraordinary number of execution calls (to shells) 
performed by malicious processes. Initially, the pattern was 
observed in malware samples 1 to 15 in Table 2. At that 
time, malware samples 16 to 23 were still undiscovered by 
the security industry. After obtaining malware samples 16 to 
23, the defi ned malicious patterns from the earlier malware 
samples were found to be present in system call traces of the 
new samples 16 to 23 as well, and can thus be used to detect 
the newer malware samples. The horizontal line in Table 2 
indicates the moment of the malicious pattern defi nition.

To verify this pattern as unique to malware, several different 
experiments were performed. The presence of the execution 
patterns was expected in benign processes as well. To 
present an accurate false positive rate (FPR) evaluation, three 
different user profi les are defi ned. The user profi les defi ne 
the type of user, hence the type of applications and processes 
used by the user.

Three user profi les are defi ned:

1.  App Store user: a user only using applications 
downloaded from the App Store. One of the 
requirements for App Store applications is the use of 
OS X’s sandbox technology.

2.  Typical user: occasionally uses applications outside 
the App Store that are not sandboxed.

3.  Power user/developer: a user who uses advanced 
features of the system or uses developer 
environments to develop software.

The user profi les allow us to defi ne the FPR more accurately 
by differentiating between the type of applications triggering 
false positives.

The evaluation consists of two phases:

1. Determining application usage of Mac users. A 
survey of 25 real Mac users was conducted to gain 
insights into application usage by users fi tting certain 
profi les. Each user was asked to select the profi le 
that best suited them, and to upload their installed 
applications.

2. Testing the top X applications for false positives. 
In roughly the same environment as described in 
Section 4, the top 90 applications derived from the 
survey were analysed for detection rate (DR) and 
false positive rate (FPR). Malicious patterns in the 
applications’ system call traces imply a false positive. 
The applications tested are available on GitHub [16].

6.1 App Store user profi le

Apart from the operating-system-owned processes, all 

processes on the system of the App Store user profi le are 
sandboxed. This implies that all the process executions 
are performed through XPC Services, and SYS_execve 
and SYS_posix_pawn are performed only by launchd and 
xpcproxy. Sixty applications from the App Store were 
installed and their system call traces analysed.

The nature of the applications was diverse, varying from 
unzip utilities to photo editors. Their system call traces show 
launchd and xpcproxy are the only processes performing the 
execution calls. This results in a DR of malware of 100% and 
a FPR of 0%.

6.2 Typical user profi le

A typical user is more likely to occasionally use applications 
distributed outside of the App Store. Applications distributed 
outside of the App Store neither have to comply with the 
strict App Store rules, nor do they have to be sandboxed. In 
this case, processes may perform execution calls, bypassing 
XPC Services. The 30 applications distributed outside the 
App Store that were used by 10 users fi tting the ‘typical user 
profi le’ were tested. In the evaluation phase, applications 
that require closer interactions with the underlying operating 
system appeared as false positives. Examples of these 
processes are Dropbox and Tresorit, both fi le-syncing cloud 
services that need processes to modify default OS X Finder 
(the equivalent of Windows Explorer) behaviour. The Google 
Chrome browser, due to its own sandbox security behaviour, 
spawns many helper processes to isolate web pages and 
plug-in elements. Other browsers do not show this behaviour. 
However, none of the process executions spawns a shell 
process, a prominent feature of OS X malware. When fi ltering 
purely on shell execution calls, the FPR is still 0%, while the 
detection rate remains 100%.

6.3 Power user/developer profi le

The power user profi le describes a user using many 
development tools, compilers and interpreters like Python 
and JavaScript (NodeJS/Electron). Of the users surveyed, 15 
described themselves as developer/power users. The top 70 
applications most used by these 15 developers were analysed. 
As expected, the interpreters and compilers for the scripting 
languages in particular showed executions to shell processes. 
The shell processes in particular call binaries related to the 
scripting language (e.g. /usr/bin/python).

Git, a widely used source code version control utility, also 
performs many execution calls to its own binaries through 
the use of shell processes. Xcode, Apple’s IDE, also performs 
execution calls to git binaries.

OpenVPN (VPN software) performs execution calls to 
OS X system binaries (e.g. /sbin/route and /sbin/ifconfi g). 
GPGTools (a GPG encryption toolset) also performs 
execution calls to its own binaries.
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A feature that all the false-positive-triggering applications 
have in common is their cross-platform compatibility. 
Python, R, git, OpenVPN, etc. all consist largely of binaries 
that are available cross-platform, meaning they have to be 
functional on a variety of (Unix-based) platforms. A shell 
process creates a generic method to interface and interact 
with these binaries, since the shell is a powerful component 
available on all Unix-based systems. The FPR under power 
users increases to roughly 20% based on the tested developer 
tools derived from the survey.

Table 3 shows the detection rates (DR) and false positive 
rates (FPR) for both shell executions and solely execution 
calls for each type of user profi le. Clearly, the malware 
detection is most effective on the ‘App Store user’ and 
‘Typical user’ profi les.

Profi le DR FPR (Shell) FPR (Exec call)

App Store user 100% 0% 0%

Typical user 100% 0% 25%

Developer/
Power user 

100% 20% –

Table 3: Detection rate (DR) and false positive rate (FPR) of 
the detection patterns per user profi le.

7. DISCUSSION & FUTURE WORK
The heat map and sequential analysis techniques used in this 
research resulted in the extraction of very powerful detection 
patterns for malware on OS X. Obviously, suffi cient knowledge 
regarding the OS X system internals is required in order to 
perform an effective analysis using the techniques described 
in this paper. In addition, it is observed that malware for OS X 
is not yet as advanced as some Microsoft Windows malware 
families, as Patrick Wardle also explains in [23].

This research and its results show that the techniques used 
are durable and reusable to extract other patterns from system 
call traces. As shown in Section 5, multiple independent 
malicious patterns were extracted using the same analysis 
technique.

The use of execution system calls and interactions with shells 
and auto-run services appears to be an accurate indication 
of malware on a system. Similar conclusions were drawn by 
Niels Provos in [6]. More of these patterns may be extracted 
by analysing the system call traces of malware. In addition 
to the features in the dataset of this research, system call 
function arguments may be of value in successive system call 
research. This research focused in particular on Apple’s OS X 
operating system, but similar observations may be present in 
system call traces on Microsoft Windows systems. I believe 
other detection patterns may be derived using machine 
learning methods on system call traces.

Malware functionality appears to be largely dependent on 
shell processes, however it is diffi cult to grasp the level of 
shell dependency. Shells are an extremely powerful and 
effective way to interact with the operating system and are 
presumably therefore used in extraordinary numbers by 
malware. Arguably, the absence of a shell for processes may 
signifi cantly reduce (malicious) interaction capabilities with 
the underlying system. Processes are forced to use OS X API 
functions, which sandboxes and isolates the process from 
the underlying system. XPC Services is an example. Such 
restrictions provide protection to a system generically.

This research focused primarily on the infection phase of 
malware. In this stage, the traces of malware appeared to be 
most prominent, and prevention of this phase provides the 
most effective protection against malware infection. System 
call analysis of the successive phase of malware may provide 
other insights into malicious behaviour.

8. CONCLUSION
This research has shown that malware on OS X is detectable 
based on the system call traces of malware in which 
fundamental dependencies of malware surface. A kernel 
extension was developed to construct the system call traces 
of processes. Based on heat map visualization and sequential 
analysis, specifi c system call patterns were identifi ed as 
malicious. The detection patterns form a detection and 
prevention rate of 100%, where depending on the type of 
applications running on a user’s system, the FPR varies 
between 0 and roughly 20%. It is shown that, in contrast 
with other malware detection research based on complex 
machine learning algorithms, it is possible to construct 
powerful malware detection patterns and effi cient prevention 
mechanisms using simple analysis and visualization 
techniques.
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