
VIRUS BULLETIN www.virusbulletin.com

1SEPTEMBER 2016

Covering the
global threat landscape

BEHAVIOURAL DETECTION AND
PREVENTION OF MALWARE ON
OS X
Vincent Van Mieghem
Delft University of Technology, The Netherlands

Malware on Apple’s OS X systems is proving to be an
increasing security threat, and one that is currently countered
solely with traditional anti-virus (AV) technologies.
Traditional AV technologies impose a signifi cant performance
overhead on the computer system and there is an inherent
delay in their effectiveness, due to their signature-based
detection techniques. This paper presents a novel generic
behavioural detection and prevention mechanism for malware
on OS X that is based on system calls. A large number of
system call traces are analysed, from which certain malicious
system call patterns are defi ned. These patterns are based on
execution system calls, executing Unix shell processes. Three
types of user profi les are defi ned to evaluate the detection
patterns, resulting in a 100% detection rate and a 0% to 20%
false positive rate, depending on the type of user profi le.

1. INTRODUCTION
Over the last three years, an increase in malware targeting
OS X systems has been observed. Five times more OS X
malware appeared in 2015 than during the preceding fi ve
years combined [1]. Many types of malware that previously
appeared only on Microsoft Windows systems are now also
emerging on OS X systems. Serious threats such as rootkits
designed to exfi ltrate valuable information from systems,
or malware that encrypts personal documents such that
they can only be decrypted in exchange for bitcoins are no
longer absent from Macs. Traditional anti-virus technologies
rely heavily on binary signature checking, a detection
technique that often lags behind [2, 3], yet traditional
detection techniques are still widely used, especially on
OS X. Nowadays, many binary obfuscation and signature
modifi cation techniques are used by malware to evade AV
detection. A need for more advanced malware detection
methods has arisen.

This paper presents a novel malware detection method that
has been shown to be able to prevent infection by every
malware sample that could be found on OS X systems at
the time, without prior knowledge of the malware samples.
System calls are used to defi ne and detect malicious
behaviour of malware processes on OS X. In addition,
the proposed techniques are performance-effi cient and
not based on any computationally intensive machine

learning algorithms. System calls are requests for specifi c
functionality from applications to an operating system.
This paper shows that monitoring the system call usage of
applications and processes on a system can reveal application
behaviours, which can be used to identify malicious
processes. By monitoring a large number of benign and
malicious processes, a clear recurring pattern of system calls
can be extracted from the malicious processes that is absent
from the system call traces of benign processes on OS X.
Heat map visualizations and sequential analysis of the system
call traces are used to obtain the insights required to construct
the malicious patterns. Several of these malicious patterns are
provided and explained in this paper.

In Section 3, the paper describes the structure of the acquired
system call traces and the utilities constructed. The process
of collecting the system calls traces from malware samples is
described in Section 4. Subsequently, the analysis and results
are explained in Section 5. Finally, the results are evaluated
and discussed in Sections 6 and 7, respectively.

2. RELATED WORK
The majority of research conducted into detecting malware
focuses on static analysis. Static analysis of malware is
a technique in which the machine code contained in the
malware binary fi le is interpreted to understand actions that
are supposed to be performed by the binary fi le. Typically,
the disassembly of the malware binary is used to obtain an
understanding of its intended functionality.

On the other end of the malware analysis spectrum, dynamic
analysis of malware aims to interpret functionality and
behaviour by running the malware sample on a particular
system and analysing the systems resources used.
Behavioural analysis is concerned primarily with deriving
identifying behavioural features from the malware. The
advantage of this technique is that binary obfuscation
techniques that are applied by malware creators to hinder
analysis by malware analysts do not hinder dynamic analysis,
because functionality is derived from actions performed by
malware on the system [3].

In 1996, Forrest et al. [4] introduced an intrusion detection
method based on monitoring the system calls used by active,
privileged processes. This work shows that a program’s
normal behaviour can be characterised by local patterns
in its traces, and deviations from these patterns could be
used to identify security violations of an executing process.
Others tried to improve this work by using machine
learning algorithms, however, these algorithms came with a
computational cost and were not able to perform real-time
detection of malware [5].

VIRUS BULLETIN www.virusbulletin.com

SEPTEMBER 20162

Niels Provos [6] introduced a tool named Systrace, which
aims to improve security of the host by enforcing system
call policies based on interposing system calls. Systrace
monitors the direct system call usage to detect and prevent
processes from violating policies. Provos points out that,
although powerful, policy enforcement at the system call
level has inherent limitations regarding the interpretation of
an application’s internal state. Kurchuk et al. [7] improve
upon Provos’ Systrace by proposing two extensions: nested
policies and dynamic policy generation.

Kang et al. [8], Medhi et al. [9], and Xiao et al. [10] propose
a malware detection method based on system calls using
established machine learning algorithms. System calls are
represented by a ‘bag’ data structure where elements are
integer frequencies of system call occurrences. Medhi uses
multidimensional n-grams to perform ‘in-execution’ detection
on Linux systems. The proposed approaches in terms of
detection rate and false positive rate are promising: an 85% to
95% detection rate is achieved.

Sun et al. [11] use dynamic monitoring of Windows API calls
to detect worms and exploits. However, their approach is
limited to the detection of worms and exploits that use hard-
coded addresses of API calls, which is not the case when
Address Space Layout Randomization (ASLR) is activated
on the operating system. Nair et al. [12] determine the
frequency of critical API calls made by programs and use this
information to construct a signature for a program. Nair et al.
introduce their own classifi cation algorithm and show an 80%
detection rate for Windows malware.

Dehnert [13] argues that an IDS running on the host
operating system itself is vulnerable to a direct attack
and proposes an intrusion detection method based on a
hypervisor. Dehnert uses system call usage and arguments
to detect malware. The detection methods implemented are
manually defi ned patterns and system call patterns using
‘sequence time-delay embedding’ (stide), a time sequence
machine learning algorithm. However, due to the absence
of any refi nement, the detection technique performs very
poorly and operates with a performance overhead of
almost 300%.

Canzanese et al. [14] propose another machine learning
approach for Microsoft Windows systems using logistic
regression trained by the Stochastic gradient descent of
system call 3-grams. Their detection method achieves a true
positive rate of 92%.

The majority of research focuses on detection algorithms
that are based on established machine learning algorithms.
In many cases, the detection algorithms are computationally
intensive and not real-time. In addition, the detection rate
has room for improvement. This research uses very similar
fundamentals – system call traces – but does not use machine
learning as a detection technique.

3. MONITORING SYSTEM CALL USAGE

One way to separate the functionality provided by an
operating system is a division between user space and kernel
space. Applications that run in user space are less privileged
in terms of permissions than kernel space processes, and are
controlled by the kernel. This separation mainly facilitates
the security of an operating system. A common way for
processes in user space to interact with the kernel is by means
of system calls. System calls are used to request specifi c
functionality from the operating system. Examples of typical
system calls are SYS_open to obtain the fi le handle of a fi le
on the fi le system, and SYS_getsocket to obtain the handle
of a socket to connect to the Internet. The implementation of
calls resides in the XNU kernel of an OS X system. The latest
XNU kernel features 489 system calls, which are defi ned
in kernel-owned memory named sysent. To monitor the
system call usage of processes, system call implementations
have to be modifi ed to log themselves upon invocation. To
accomplish system call logging, system call implementations
are hooked into, which enables the logging functionality.
The implementations of system calls in the sysent-table are
then replaced with different implementations. This technique
is called ‘hooking’ [15]. Figure 1 shows the rewiring of a
system call implementation after the call is ‘hooked’. The
sysent entry points to the hooked implementation system call
instead of the original system call implementation. System
call i represents a normal system call wiring, while system
call j represents a hooked system call, in which the j-hook
block logs system call j and eventually returns back to the
original j system call implementation.

Figure 1: High level sysent-table representation in which all
of the system calls are defi ned. System call i represents the

normal system call wiring to its implementation. System call j
represents a hooked system call.

A kernel module implementing the hooking of system calls
was developed (the source code is available on GitHub [16]).
The hook logs the system call invoked in the exact order of
occurrence to a log fi le and subsequently calls the original

 VIRUS BULLETIN www.virusbulletin.com

SEPTEMBER 2016 3

system call implementation to continue normal functionality,
as shown in Figure 1. Table 1 shows the metadata of a system
call that is logged to the log fi le.

Name Description

Uptime Uptime of the system, in
microseconds precision, to keep
track of system call order.

Process ID Together with the parent process
ID, this provides the ability to
perform traces in the dataset.

Parent process ID Together with the process ID,
this provides the ability to
perform traces in the dataset.

Privileges Does the calling process have
super-user privileges?

Process name Name of the process.

Process execution path File system path of the process.

System call name Name of the system call.

SYS_write location Location to which the ‘write’
system call writes.

Table 1: Metadata of a system call that is captured.

Subsequently, while the kernel module is loaded, system calls
called by processes log their invocation to a log fi le, resulting
in a large number of system call traces in the exact order in
which the calls were invoked. The log fi le represents the ‘raw
dataset’. Listing 1 shows several records of the raw dataset.
The records are sequential and ordered chronologically,
where each record represents a single operation (system
call invocation). The records are semicolon separated,
representing the attributes presented in the fi rst line (header).
In Listing 1, process pboard executes the /bin/sh binary, using
the SYS_posix_spawn system call.

Not all system calls are hooked. Some are called more than
500 times per second in an idle system state. Examples of
such calls are SYS_read for reading fi les and SYS_setitimer,
which is used by processes to set an interval timer. System
call usage was observed on an idle system. The system
calls generating more than 500 log records per second were

 time ; process name; pid; ppid; syscall ; is_root;

 0:5:6,448659; pboard ; 474; 1 ; SYS_pipe ; 0;

 0:5:6,448689; pboard ; 474; 1 ; SYS_posix_spawn ; 0;

 0:5:6,450010; /bin/sh ; 474; 1 ; NEW_PROCESS ; 0;

 0:5:6,450205; sh ; 476; 474 ; SYS_shared_region_chk ; 0;

Listing 1: Process pboard executes /bin/sh process and sh starts calling system calls (OSX.OceanLotus.A).

excluded from the list of hooked system calls to prevent
pollution of the dataset. A list of the hooked system calls is
available at the GitHub repository [16].

4. COLLECTING SYSTEM CALL TRACES
System call traces can only be collected at the runtime of
processes. Malware has to be executed while the kernel
module is loaded into the kernel of the operating system. A
virtual machine featuring a fully patched OS X 10.11.3 was
used to run malware samples. After the kernel module was
loaded, the malware sample was executed and monitored for
fi ve minutes, which was the initial estimate of the amount
of time required for infection of a system by the malware
samples. In the analysis phase, it appeared the infection phase
was much shorter. Subsequently, the log fi le was captured
and the virtual machine reverted to its original state for the
next malware sample to be monitored.

According to Symantec, 57 unique OS X malware samples
have been found since 2010 [17]. Obtaining functional
malware samples is not trivial, and in order to create a
system call trace from a malware sample, the sample must be
complete and functional. Often, only certain malicious parts
of OS X applications that are not executable are uploaded
to malware sample collecting services such as VirusTotal.
For this research, 23 functional OS X malware samples were
obtained from different sources [18–20]. Table 2 provides
an overview of the functional malware samples obtained and
analysed.

5. ANALYSIS
The analysis of the collected raw system call traces aims
to provide insights into the discrepancies between system
call traces in benign and malicious processes. The goal is to
extract recurring patterns that are present in malicious system
call traces, but absent from benign system call traces. Such
patterns may then be used to identify a malicious process.
The analysis is based on two simple techniques: heat maps
and manual sequential analysis. A heat map, representing the
number of calls per system call per process, was used to gain
insight into the usage of outlying system calls by a process.
Figure 2 shows the heat map of OSX.Wirelurker’s system call
trace. The system calls called, and the processes, are listed on
the x-axis and y-axis, respectively. The data points (number

VIRUS BULLETIN www.virusbulletin.com

SEPTEMBER 20164

of system calls) are normalized in the heat map, according to
their occurrence in the system call traces of other processes.
The normalization ensures that processes calling specifi c
system calls that are called signifi cantly less frequently
by other processes show darker in the heat map and imply
outliers. In the manual sequential analysis, consisting of
linear traversal of the system call traces, these outliers were
analysed to derive specifi c recurring patterns.

5.1 Execution calls

The heat map visualization of a dataset containing the system
call traces of benign processes shows SYS_execve and
SYS_posix_spawn system calls executed only by two
processes specifi c to the OS X operating system: launchd
and xpcproxy. The black dotted square in Figure 2 shows
their usage of SYS_posix_spawn. In OS X’s sandboxing

No. Name Type Detection
date

1 OSX.Flashback Trojan 09/30/2011

2 OSX.Crisis.I Rootkit 07/25/2012

3 OSX.FakeCodec Adware 02/03/2013

4 OSX.LaoShu.A Backdoor 01/21/2014

5 OSX.CoinThief.A Trojan 02/26/2014

6 OSX.Xslcmd Trojan 09/05/2014

7 OSX.Wirelurker Trojan 11/06/2014

8 OSX.Janicab Trojan 11/26/2014

9 OSX.iWorm Trojan 01/05/2015

10 OSX.Kitmos.A Backdoor 03/04/2015

11 OSX.Genieo!gen1 Adware 05/18/2015

12 OSX.Malcol Adware 05/21/2015

13 OSX.Downloader Adware 07/29/2015

14 OSX.Jahlav.A Trojan 07/29/2015

15 OSX.InstallCore Adware 11/16/2015 before

16 OSX.EliteKeylogger Keylogger 02/15/2016 after

17 OSX.OceanLotus Trojan 02/19/2016

18 OSX.Crisis.II Rootkit 02/26/2016

19 OSX.KeRanger.A Trojan 03/06/2016

20 OSX.Pirrit Adware 04/06/2016

21 OSX.Bundlore Adware 04/11/2016

22 OSX.Eleanor Backdoor 07/06/2016

23 OSX.Keydnap Backdoor 07/13/2016

Table 2: A list of OS X malware samples analysed in this
research.

technology, launchd and xpcproxy [21] (XPC Services)
are responsible for process executions and interprocess
communication [22]. Figure 3 illustrates the XPC Services
process execution request scheme on a high level. On a clean
system, launchd and xpcproxy are the only processes that use
SYS_execve and SYS_posix_spawn.

However, the heat map visualization of malware shows
the presence of SYS_execve and SYS_posix_spawn
performed by processes other than launchd and xpcproxy
(also observable in Figure 2: SYS_posix_spawn calls
by com.apple.MailServer and update are malicious calls
performed by the OSX.Wirelurker malware). Malicious
processes appeared to be responsible for these supplementary
SYS_execve and SYS_posix_spawn calls. In addition, the
execution calls appeared to execute shell processes (i.e.
/bin/sh and /bin/bash) that, again, are responsible for many
of the additional execution calls. After more in-depth
manual sequential analysis of the system call traces, in
which traces of recurring patterns were searched for, a clear
pattern appeared to be present in all malware samples listed
in Table 2. At some point in their infection process, all
malicious processes use either of these calls (SYS_execve
or SYS_posix_spawn) to execute a shell process, without
requesting XPC Services (illustrated in Figure 4). The
possible reason is discussed in Section 7. Listings 1, 2 and 3
show a sample of the records in the system call trace in which
the malicious processes use the execution calls to spawn a
shell process.

5.2 Persistency

Another behaviour derived from the heat map and the
sequential analysis that appeared to be inherent to malware
was gaining persistency using LaunchDaemons (auto-run
items on system start-up). In OS X, processes are required

0:1:27,174721; 0; 358; 357; SYS_posix_spawn; 0;

0:1:27,176143; /bin/sh; 358; 0; NEW_PROCESS; 1;

Listing 2: Process 0 executes /bin/sh process using
SYS_posix_spawn system call (OSX.iWorm).

time; process name; pid; ppid; syscall; is_root;

0:13:58,523214; Transmission; 413; 1; SYS_posix_spawn; 0;

0:13:58,524348; /bin/sh; 413; 1; NEW_PROCESS; 0;

...

0:13:58,530059; sh; 414; 413; SYS_execve; 0;

0:13:58,530631; /Users/m/Library/kernel_service; 414;
413;

NEW_PROCESS; 0;

Listing 3: Process transmission executes the /bin/sh process
using the SYS_posix_spawn system call, and process sh
executes the kernel_service process using a SYS_execve

system call (OSX.KeyRanger.A).

 VIRUS BULLETIN www.virusbulletin.com

SEPTEMBER 2016 5

F
ig

ur
e

2:
 H

ea
t m

ap
 v

is
ua

li
za

ti
on

 o
f O

SX
.W

ir
el

ur
ke

r
m

al
ic

io
us

 s
ys

te
m

 c
al

l t
ra

ce
. T

he
 s

ys
te

m
 c

al
ls

 c
al

le
d

an
d

th
e

pr
oc

es
se

s
ar

e
li

st
ed

 o
n

th
e

x-
ax

is
 a

nd
 y

-a
xi

s,

re
sp

ec
ti

ve
ly

. E
ac

h
sq

ua
re

 r
ep

re
se

nt
s

th
e

nu
m

be
r

of
 s

ys
te

m
 c

al
ls

, a
s

a
no

rm
al

iz
ed

 d
at

a
po

in
t.

D
ar

ke
r

bl
oc

ks
 r

ep
re

se
nt

 a
n

ou
tl

yi
ng

 n
um

be
r

of
 s

ys
te

m
 c

al
ls

pe

rf
or

m
ed

 b
y

a
pr

oc
es

s,
 r

el
at

iv
e

to
 o

th
er

 p
ro

ce
ss

es
. T

he
 b

la
ck

 a
rr

ow
s

in
di

ca
te

 th
e

SY
S_

ex
ec

ve
 c

al
ls

 p
er

fo
rm

ed
 b

y
sh

, a
nd

 th
e

bl
ac

k
sq

ua
re

 in
di

ca
te

s
SY

S_
po

si
x_

sp
aw

n
be

in
g

ca
ll

ed
 b

y
la

un
ch

d
an

d
xp

cp
ro

xy
. N

ot
e:

 th
e

SY
S_

po
si

x_
sp

aw
n

ca
ll

s
by

 c
om

.a
pp

le
.M

ai
lS

er
ve

r
an

d
up

da
te

 a
re

 m
al

ic
io

us
 c

al
ls

 p
er

fo
rm

ed

by
 th

e
O

SX
.W

ir
el

ur
ke

r
m

al
w

ar
e.

VIRUS BULLETIN www.virusbulletin.com

SEPTEMBER 20166

to store a confi guration fi le in a specifi c LaunchDaemon
directory and thereafter notify the OS (via launchctl) of the
confi g’s existence in order to (persistently) be started by the
operating system upon start-up. Notifying launchctl is clearly
visible through the execution of launchctl by the malicious
process. Every process analysed that uses LaunchDaemons
for persistency on the system executes launchctl, as shown in
Listings 4, 5 and 6.

0:1:48,287125; sh; 367; 363; SYS_execve; 0;

0:1:48,288733; /bin/launchctl; 367; 0; NEW_PROCESS; 1;

Listing 4: Shell process 0 executes process launchctl
(OSX.iWorm).

0:2:11,670527; sh; 390; 387; SYS_execve; 0;

0:2:11,671598; /bin/launchctl; 390; 0; NEW_PROCESS; 1;

Listing 5: Shell process executes process launchctl
(OSX.Wirelurker.A).

0:15:13,439772; WaAvsmZW.EMb; 1049; 1046; SYS_posix_spawn; 0;

0:15:13,439945; /bin/launchctl; 1049; 0; NEW_PROCESS; 1;

Listing 6: Process WaAvsmZW.EMb executes process
launchctl (OSX.Crisis.A).

Some examples of OS X malware use cronjobs, a Unix utility
used to execute a script at certain defi ned moments of time,
to gain persistency on a system. This is visible (Listing 7)
based on the execution of crontab, a process responsible for
managing cronjobs.

0:1:33,92905; sh; 388; 386; SYS_execve; 0;

0:1:33,94207; /usr/bin/crontab; 387; 0; NEW_PROCESS; 0;

Listing 7: Shell process launching crontab (OSX.Jahlav).

Figure 3: Benign (sandboxed) process X requests XPC
Services to interact with process Y. XPC Services decides

whether to allow or deny this request.

Figure 4: Malicious process X executes process Y without
XPC interaction. Typically, process Y is a shell process.

Figure 5: Number of execution calls, execution of shell
processes and executions of launchctl by malicious processes.
Note: y-axis has a logarithmic scale. Note: OSX.Crisis lacks

the execution of a shell process due to the absence of a
complete and functional sample of the rootkit.

Based on the heat map visualization of the entire system call
trace, processes that connect to the Internet can be observed.
Internet-connecting processes invoke many SYS_getsockopt
and SYS_setsockopt operations, which are responsible for
receiving and sending data over a socket, respectively.

Figure 5 shows the number of execution system calls,
execution to shell processes, and executions of launchctl per
malware sample. The large number of execution system calls
to shell processes in all malware samples can clearly be seen.

 VIRUS BULLETIN www.virusbulletin.com

SEPTEMBER 2016 7

6. EVALUATION
The most prominent malicious pattern derived from the
analysis phase to detect presence of malware on a system
is the extraordinary number of execution calls (to shells)
performed by malicious processes. Initially, the pattern was
observed in malware samples 1 to 15 in Table 2. At that
time, malware samples 16 to 23 were still undiscovered by
the security industry. After obtaining malware samples 16 to
23, the defi ned malicious patterns from the earlier malware
samples were found to be present in system call traces of the
new samples 16 to 23 as well, and can thus be used to detect
the newer malware samples. The horizontal line in Table 2
indicates the moment of the malicious pattern defi nition.

To verify this pattern as unique to malware, several different
experiments were performed. The presence of the execution
patterns was expected in benign processes as well. To
present an accurate false positive rate (FPR) evaluation, three
different user profi les are defi ned. The user profi les defi ne
the type of user, hence the type of applications and processes
used by the user.

Three user profi les are defi ned:

1. App Store user: a user only using applications
downloaded from the App Store. One of the
requirements for App Store applications is the use of
OS X’s sandbox technology.

2. Typical user: occasionally uses applications outside
the App Store that are not sandboxed.

3. Power user/developer: a user who uses advanced
features of the system or uses developer
environments to develop software.

The user profi les allow us to defi ne the FPR more accurately
by differentiating between the type of applications triggering
false positives.

The evaluation consists of two phases:

1. Determining application usage of Mac users. A
survey of 25 real Mac users was conducted to gain
insights into application usage by users fi tting certain
profi les. Each user was asked to select the profi le
that best suited them, and to upload their installed
applications.

2. Testing the top X applications for false positives.
In roughly the same environment as described in
Section 4, the top 90 applications derived from the
survey were analysed for detection rate (DR) and
false positive rate (FPR). Malicious patterns in the
applications’ system call traces imply a false positive.
The applications tested are available on GitHub [16].

6.1 App Store user profi le

Apart from the operating-system-owned processes, all

processes on the system of the App Store user profi le are
sandboxed. This implies that all the process executions
are performed through XPC Services, and SYS_execve
and SYS_posix_pawn are performed only by launchd and
xpcproxy. Sixty applications from the App Store were
installed and their system call traces analysed.

The nature of the applications was diverse, varying from
unzip utilities to photo editors. Their system call traces show
launchd and xpcproxy are the only processes performing the
execution calls. This results in a DR of malware of 100% and
a FPR of 0%.

6.2 Typical user profi le

A typical user is more likely to occasionally use applications
distributed outside of the App Store. Applications distributed
outside of the App Store neither have to comply with the
strict App Store rules, nor do they have to be sandboxed. In
this case, processes may perform execution calls, bypassing
XPC Services. The 30 applications distributed outside the
App Store that were used by 10 users fi tting the ‘typical user
profi le’ were tested. In the evaluation phase, applications
that require closer interactions with the underlying operating
system appeared as false positives. Examples of these
processes are Dropbox and Tresorit, both fi le-syncing cloud
services that need processes to modify default OS X Finder
(the equivalent of Windows Explorer) behaviour. The Google
Chrome browser, due to its own sandbox security behaviour,
spawns many helper processes to isolate web pages and
plug-in elements. Other browsers do not show this behaviour.
However, none of the process executions spawns a shell
process, a prominent feature of OS X malware. When fi ltering
purely on shell execution calls, the FPR is still 0%, while the
detection rate remains 100%.

6.3 Power user/developer profi le

The power user profi le describes a user using many
development tools, compilers and interpreters like Python
and JavaScript (NodeJS/Electron). Of the users surveyed, 15
described themselves as developer/power users. The top 70
applications most used by these 15 developers were analysed.
As expected, the interpreters and compilers for the scripting
languages in particular showed executions to shell processes.
The shell processes in particular call binaries related to the
scripting language (e.g. /usr/bin/python).

Git, a widely used source code version control utility, also
performs many execution calls to its own binaries through
the use of shell processes. Xcode, Apple’s IDE, also performs
execution calls to git binaries.

OpenVPN (VPN software) performs execution calls to
OS X system binaries (e.g. /sbin/route and /sbin/ifconfi g).
GPGTools (a GPG encryption toolset) also performs
execution calls to its own binaries.

VIRUS BULLETIN www.virusbulletin.com

SEPTEMBER 20168

A feature that all the false-positive-triggering applications
have in common is their cross-platform compatibility.
Python, R, git, OpenVPN, etc. all consist largely of binaries
that are available cross-platform, meaning they have to be
functional on a variety of (Unix-based) platforms. A shell
process creates a generic method to interface and interact
with these binaries, since the shell is a powerful component
available on all Unix-based systems. The FPR under power
users increases to roughly 20% based on the tested developer
tools derived from the survey.

Table 3 shows the detection rates (DR) and false positive
rates (FPR) for both shell executions and solely execution
calls for each type of user profi le. Clearly, the malware
detection is most effective on the ‘App Store user’ and
‘Typical user’ profi les.

Profi le DR FPR (Shell) FPR (Exec call)

App Store user 100% 0% 0%

Typical user 100% 0% 25%

Developer/
Power user

100% 20% –

Table 3: Detection rate (DR) and false positive rate (FPR) of
the detection patterns per user profi le.

7. DISCUSSION & FUTURE WORK
The heat map and sequential analysis techniques used in this
research resulted in the extraction of very powerful detection
patterns for malware on OS X. Obviously, suffi cient knowledge
regarding the OS X system internals is required in order to
perform an effective analysis using the techniques described
in this paper. In addition, it is observed that malware for OS X
is not yet as advanced as some Microsoft Windows malware
families, as Patrick Wardle also explains in [23].

This research and its results show that the techniques used
are durable and reusable to extract other patterns from system
call traces. As shown in Section 5, multiple independent
malicious patterns were extracted using the same analysis
technique.

The use of execution system calls and interactions with shells
and auto-run services appears to be an accurate indication
of malware on a system. Similar conclusions were drawn by
Niels Provos in [6]. More of these patterns may be extracted
by analysing the system call traces of malware. In addition
to the features in the dataset of this research, system call
function arguments may be of value in successive system call
research. This research focused in particular on Apple’s OS X
operating system, but similar observations may be present in
system call traces on Microsoft Windows systems. I believe
other detection patterns may be derived using machine
learning methods on system call traces.

Malware functionality appears to be largely dependent on
shell processes, however it is diffi cult to grasp the level of
shell dependency. Shells are an extremely powerful and
effective way to interact with the operating system and are
presumably therefore used in extraordinary numbers by
malware. Arguably, the absence of a shell for processes may
signifi cantly reduce (malicious) interaction capabilities with
the underlying system. Processes are forced to use OS X API
functions, which sandboxes and isolates the process from
the underlying system. XPC Services is an example. Such
restrictions provide protection to a system generically.

This research focused primarily on the infection phase of
malware. In this stage, the traces of malware appeared to be
most prominent, and prevention of this phase provides the
most effective protection against malware infection. System
call analysis of the successive phase of malware may provide
other insights into malicious behaviour.

8. CONCLUSION
This research has shown that malware on OS X is detectable
based on the system call traces of malware in which
fundamental dependencies of malware surface. A kernel
extension was developed to construct the system call traces
of processes. Based on heat map visualization and sequential
analysis, specifi c system call patterns were identifi ed as
malicious. The detection patterns form a detection and
prevention rate of 100%, where depending on the type of
applications running on a user’s system, the FPR varies
between 0 and roughly 20%. It is shown that, in contrast
with other malware detection research based on complex
machine learning algorithms, it is possible to construct
powerful malware detection patterns and effi cient prevention
mechanisms using simple analysis and visualization
techniques.

ACKNOWLEDGEMENT
In particular, I would like to thank Maarten Boone and Fox-IT
for their threat intelligence and cooperation; VirusTotal for
its generosity in providing a research account used to obtain
malware samples; Patrick Wardle from Objective-See/Synack
and Claud Xiao from Palo Alto Networks for providing
malware samples; and Pedro Vilaça for his shared knowledge
and open-source techniques to bypass kernel ASLR and
memory write protection in the XNU kernel [24].

REFERENCES
[1] Bit9 + Carbon Black. 2015: The Most Prolifi c Year in

history for OS X malware. 2015.
https://www.documentcloud.org/documents/2459197
-bit9-carbon-black-threat-research-report-2015.html.

 VIRUS BULLETIN www.virusbulletin.com

SEPTEMBER 2016 9

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca,
Ionuţ Răileanu, Chris Stock

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Developer: Lian Sebe

Consultant Technical Editor: Dr Morton Swimmer

© 2016 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com Web: https://www.virusbulletin.com/

[2] Gaudesi, M.; Marcelli, A.; Sanchez, E.; Squillero,
G.; Tonda, A. Challenging Anti-virus Through
Evolutionary Malware Obfuscation. Applications of
Evolutionary Computation. Proceedings of the 19th
European Conference, EvoApplications 2016, Part II.

[3] Moser, A.; Kruegel, C.; Kirda, E. Limits of Static
Analysis for Malware Detection. Annual Computer
Security Applications Conference, ACSAC, 2007.

[4] Forrest, S.; Hofmeyr, S.; Somayaji, A.; Longstaff, T.
A Sense of Self for UNIX Processes. Proceedings of
the 1996 IEEE Symposium on Security and Privacy.

[5] Jewell, B.; Beaver, J. Host-Based Data Exfi ltration
Detection via System Call Sequences. Proceedings
of the 6th International Conference on Information
Warfare and Security, 2011.

[6] Provos, N. Improving Host Security with System Call
Policies. http://niels.xtdnet.nl/papers/systrace.pdf.

[7] Kurchuk, A.; Keromytis, A. D. Recursive Sandboxes:
Extending Systrace to Empower Applications.
Security and Protection in Information Processing
Systems, 2004, Springer.

[8] Kang, D. K.; Fuller, D.; Honavar V. Learning
Classifi ers for Misuse and Anomaly Detection Using
a Bag of System Calls Representation. Annual
Information Assurance Workshop, 2005.

[9] Mehdi, B.; Ahmed F.; Khayyam S.; Farooq M.
Towards a Theory of Generalizing System Call
Representation for In-execution Malware Detection.
International Conference on Communications, 2010.

[10] Xiao H.; Stibor T. A Supervised Topic Transition
Model for Detecting Malicious System Call
Sequences. Workshop on Knowledge discovery,
Modeling and Simulation, 2011.

[11] Sun, H. M.; Lin, Y. H.; Wu, M. F. API Monitoring
System for Defeating Worms and Exploits in
MS-Windows Systems. Information Security and
Privacy, 2006, Springer.

[12] Nair, V. P.; Jain, H.; Golecha, Y. K.; Gaur, M. S.;
Laxmi, V. MEDUSA: Metamorphic Malware
Dynamic Analysis using Signature from API.
Proceedings of the 3rd International Conference on
Security of Information and Networks, 2010, ACM.

[13] Dehnert, A. W. Using VProbes for Intrusion
Detection. 2013. Massachusetts Institute of
Technology.

[14] Canzanese, R.; Mancoridis, S.; Kam, M. System
Call-Based Detection of Malicious Processes,
Software Quality, Reliability and Security (QRS).
IEEE International Conference 2015.

[15] https://en.wikipedia.org/wiki/Hooking.

[16] https://github.com/vivami/grey_fox.

[17] https://www.symantec.com/security_response/
landing/azlisting.jsp?azid=O.

[18] https://objective-see.com/.

[19] https://www.virustotal.com/.

[20] https://researchcenter.paloaltonetworks.com/.

[21] https://developer.apple.com/library/mac/
documentation/Darwin/Reference/ManPages/man8/
xpcproxy.8.html.

[22] Levin, J. Mac OS X and iOS Internals: To the
Apple’s Core. Wrox, 1st edition, 2012.

[23] Wardle, P., Writing bad ass malware for OSX.
BlackHat Conference 2015.

[24] Vilaça, P. (a.k.a. gdbinit). Onyx the Black Cat.
https://github.com/gdbinit/onyx-the-black-cat.

